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Sampling-based approaches to uncertainty and sensitivity analysis are both effective and 
widely used [1-4].  Analyses of this type involve the generation and exploration of a 
mapping from uncertain analysis inputs to uncertain analysis results.  The underlying idea 
is that analysis results y(x) = [y1(x), y2(x), …, ynY(x)] are functions of uncertain analysis 
inputs x = [x1, x2, …, xnX]. In turn, uncertainty in x results in a corresponding uncertainty 
in y(x). This leads to two questions:  (i) What is the uncertainty in y(x) given the 
uncertainty in x?, and (ii) How important are the individual elements of x with respect to 
the uncertainty in y(x)? The goal of uncertainty analysis is to answer the first question, 
and the goal of sensitivity analysis is to answer the second question. In practice, the 
implementation of an uncertainty analysis and the implementation of a sensitivity 
analysis are very closely connected on both a conceptual and a computational level. 
 
Implementation of a sampling-based uncertainty and sensitivity analysis involves five 
components: (i) Definition of distributions D1, D2, …, DnX  that characterize the 
uncertainty in the components x1, x2, …, xnX of x, (ii) Generation of a sample x1, x2, …,  
xnS from the x’s in consistency with the distributions D1, D2, …, DnX, (iii) Propagation of 
the sample through the analysis to produce a mapping [xk, y(xk)], k = 1, 2, …, nS, from 
analysis inputs to analysis results, (iv) Presentation of uncertainty analysis results (i.e., 
approximations to the distributions of the elements of y constructed from the 
corresponding elements of y(xk), k = 1, 2, …, nS), and (v) Determination of sensitivity 
analysis results (i.e., exploration of the mapping [xk, y(xk)], k = 1, 2, …, nS). The five 
preceding steps will be discussed and illustrated with results from past analyses (e.g., [5-
7]). 
 
Definition of the distributions D1, D2, …, DnX  that characterize the uncertainty in the 
components x1, x2, …, xnX of x is the most important part of a sampling-based uncertainty 
and sensitivity analysis as these distributions determine both the uncertainty in y and the 
sensitivity of y to the elements of x. The distributions D1, D2, …, DnX are typically 
defined through an expert review process [8-11], and their development can constitute a 
major analysis cost. A possible analysis strategy is to perform an initial exploratory 
analysis with rather crude definitions for D1, D2, …, DnX  and use sensitivity analysis to 
identify the most important analysis inputs; then, resources can be concentrated on 
characterizing the uncertainty in these inputs and a second presentation or decision-aiding 
analysis can be carried with these improved uncertainty characterizations. 
 



Several sampling strategies are available, including random sampling, importance 
sampling, and Latin hypercube sampling [12, 13].  Latin hypercube sampling is very 
popular for use with computationally demanding models because its efficient 
stratification properties allow for the extraction of a large amount of uncertainty and 
sensitivity information with a relatively small sample size. In addition, effective 
correlation control procedures are available for use with Latin hypercube sampling [14, 
15].  The popularity of Latin hypercube sampling recently led to the original article being 
designated a Technometrics classic in experimental design [16]. 
 
Propagation of the sample through the analysis to produce the mapping [xk, y(xk)], k = 1, 
2, …, nS, from analysis inputs to analysis results is often the most computationally 
demanding part of  a sampling-based uncertainty and sensitivity analysis. The details of 
this propagation are analysis specific and can range from very simple for analyses that 
involve a single model to very complicated for large analyses that involve complex 
systems of linked models [7, 17]. 
 
Presentation of uncertainty analysis results is generally straight forward and involves 
little more than displaying the results associated with the already calculated mapping [xk, 
y(xk)], k = 1, 2, …, nS. Presentation possibilities include means and standard deviations, 
density functions, cumulative distribution functions (CDFs), complementary cumulative 
distribution functions (CCDFs), and box plots [2, 13].  Presentation formats such as 
CDFs, CCDFs and box plots are usually preferable to means and standard deviations 
because of the large amount of uncertainty information that is lost in the calculation of 
means and standard deviations. 
 
Determination of sensitivity analysis results is usually more demanding than the 
presentation of uncertainty analysis results due to the need to actually explore the 
mapping [xk, y(xk)], k = 1, 2, …, nS, to assess the effects of individual components of x 
on the components of y. Available sensitivity analysis procedures include examination of 
scatterplots, regression analysis, correlation and partial correlation analysis, stepwise 
regression analysis, rank transformations to linearize monotonic relationships, 
identification of nonmonotonic patterns, and identification of nonrandom patterns [2-4, 
18, 19]. 
 
Sampling-based uncertainty and sensitivity analysis is widely used, and as a result, is a 
fairly mature area of study. However, there still remain a number of important challenges 
and areas for additional study. For example, there is a need for sensitivity analysis 
procedures that are more effective at revealing nonlinear relations than those currently in 
use.  Possibilities include procedures based on nonparametric regression [20-22], the two-
dimensional Kolmogorov-Smirnov test [23-25], tests for nonmonotone relations [26], 
tests for nonrandom patterns [27-31], and complete variance decomposition [32, 33].  As 
another example, sampling-based procedures for uncertainty and sensitivity analysis 
usually use probability as the model, or representation, for uncertainty.  However, when 
limited information is available with which to characterize uncertainty, probabilistic 
characterizations can give the appearance of more knowledge than is really present. 
Alternative representations for uncertainty such as evidence theory and possibility theory 



merit consideration for their potential to represent uncertainty in situations where little 
information is available [34, 35].  Finally, a significant challenge is the education of 
potential users of uncertainty and sensitivity analysis about (i) the importance of such 
analyses and their role in both large and small analyses, (ii) the need for an appropriate 
separation of aleatory and epistemic uncertainty in the conceptual and computational 
implementation of analyses of complex systems [36-40], (iii) the need for a clear 
conceptual view of what an analysis is intended to represent and a computational design 
that is consistent with that view [41], and (iv) the importance of avoiding deliberately 
conservative assumptions if meaningful uncertainty and sensitivity analysis results are to 
be obtained. 
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